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Abstract: Polyunsaturated fatty acids (PUFAs) have an important impact on the development of the brain, especially 

during the prenatal and the early postnatal phases, and on the functioning of the adult brain. Deficiencies and 

imbalances of PUFAs can have significant effects on cognitive functions. Decreased levels of omega-3 (n-3) PUFAs have 

been suggested to be associated with symptoms of attention deficit/hyperactivity disorder (ADHD). The main 

symptoms of ADHD are hyperactivity, inattention and impulsivity. The aim of the present study was to elucidate the 

effects of n-3 PUFA deficiency on attention functions, impulsivity and activity by assessing the behavior of the fourth 

generation of n-3 PUFA depleted Wistar rats. Four generations of Wistar rats were outbred, and throughout the whole 

breeding period, dams and their offspring were fed with an n-3 PUFA-deficient diet. The study was performed in male 

offspring of the fourth generation of n-3 PUFA deficient dams. Twelve males from the deficient group and twelve 

males fed both prenatally and throughout the entire experiment with an n-3 fatty acid-sufficient diet (control group) 

were tested. Behavioral testing was performed using the three-choice-serial-reaction-time task (3CSRTT). The present 

data showed no relevant effects of a transgenerational n-3 PUFA deficiency on attention, impulsivity and activity. A 

longer period of n-3 PUFA deprivation may be needed to arrive at reduced n-3 PUFA concentrations in the brain which 

could produce behavioral effects. It may therefore be necessary to examine the effects of transgenerational n-3 PUFA 

deprivation on rat cognitive functioning over more than four generations. 

Key words: Attention deficit/hyperactivity disorder; attention; impulsivity; activity; omega-3 polyunsaturated fatty 

acids; rat. 

 
1. Introduction 

There are numerous indications that decreased levels of 

polyunsaturated fatty acids (PUFAs) are associated with 

mental illness. PUFAs encompass omega-6 (n-6) PUFAs, 

e.g. arachidonic acid (AA, C20:4 n-6), and omega-3 (n-3) 

PUFAs, e.g. eicosapentaenoic acid (EPA, C20:5 n-3) and 

docosahexaenoic acid (DHA, C22:6 n-3). Among the 

various kinds of PUFAs, n-6 and n-3 PUFAs have an 

especially important impact on both brain development 

and functioning [1]. These essential nutrients cannot be 

synthesized by mammals and hence need to be supplied 

through dietary intake [2,3]. PUFAs are involved in 

various neuronal activities – from influences on the 

membrane fluidity and neurotransmission processes to 

the regulation of gene formulations [1,4]. Deficiencies 

and imbalances of PUFAs have significant effects on 

cognitive functions and may be associated with disorders 

such as attention deficit/hyperactivity disorder (ADHD) 

[1,5,6]. 

 ADHD is one of the most common psychiatric 

disorders of childhood and adolescence. The cardinal 

symptoms of ADHD are hyperactivity, attention deficits 

and increased impulsivity [7–9]. A dysfunction of 

dopaminergic neurotransmission appears to be 

important in this disorder [10]. However, the exact cause 

of ADHD and the underlying neurobiology are still 
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unknown [11–15]. Apart from biological, genetic and 

environmental factors, the importance of PUFA 

deficiency as a cause of symptoms of ADHD is often 

considered [1,16,17]. 

 Neurodevelopmental studies showed that an 

adequate amount of PUFAs is important during prenatal 

(particularly in the last trimester of gestation) and early 

postnatal development [18–23]. After birth, the growth 

of the central nervous system (CNS) progresses rapidly, 

increasing the vulnerability of the brain to organismic 

deficits in PUFA levels [1,24]. PUFAs such as AA and DHA 

are present in the milk of humans and mammals, 

supporting normal growth and development of infants 

[25–27]. Moreover, the amount of n-3 and n-6 PUFAs in 

milk is strongly dependent on the mother’s fat intake 

[28,29]. Several studies demonstrated that a lack of DHA 

in preterm infants through the maternal diet reduced the 

DHA concentration in the cerebral cortex and in 

phospholipids of red blood cells [20,30–32]. Additionally, 

it has been shown that infants fed with a diet low in DHA 

are at increased risk for neurological and neurocognitive 

deficits, e.g. lower IQ scores and visual impairments [33–

40]. These results show that the infant brain is not 

protected from harmful effects resulting from an 

insufficiency of PUFAs [29,41]. 

 Empirical studies have shown that plasma 

concentrations of n-3 PUFAs are decreased in children 

and adults with symptoms of ADHD [16,42]. These 

reduced concentrations of n-3 PUFAs are also related to 

behavioral problems and learning disabilities [43,44]. In 

ADHD research, several studies reported lowered levels 

of AA and DHA in red blood cells of children and 

adolescents with ADHD [6,16,42,45,46]. Other studies 

demonstrated elevated ratios of n-6/n-3 PUFAs (e.g. 

AA/EPA) in the plasma of ADHD-affected children and 

adults [16,42,47,48]. Moreover, Colquhoun et al. [17] 

and Mitchell et al. [49] described symptoms such as 

extreme thirst (polydypsia), increased desire to urinate 

(polyuria) and dry hair or skin in children with ADHD. 

These manifestations are associated with a reduced 

amount of n-3 PUFAs in the blood [16].  

 Taken together, these research findings indicate 

possible links between deficiencies in organismic levels 

of n-3 PUFAs and both the presence of ADHD symptoms 

and neurocognitive deficits. However, the relevant 

studies differed widely in their methodology, the types 

and sizes of employed samples as well as the exact 

parameters measured. Moreover, the number of 

investigations is small. Furthermore, the difficulty of 

controlling and quantifying dietary intake of PUFAs in 

human studies is an important consideration, given the 

fact that dietary intake is the only source of PUFAs in 

humans. In the future, more experimental and clinical 

studies should be conducted [5,50] in order to 

consolidate these findings. 

 It is still unknown whether a deficiency in PUFAs 

induces ADHD symptoms. PUFAs cannot be synthesized 

by the human body but are necessary for normal 

metabolism [2,3,51]. PUFAs are a main element of 

phospholipids, which are one component of the brain’s 

neuronal cell membranes. Therefore the amount of 

PUFAs influences the property of the neuronal 

membrane and the function of the related receptors and 

transporters [52–54]. It is possible that an PUFA 

deficiency affects the cellular signal processes, synapse 

function and neurotransmission, e.g. in the dopaminergic 

and serotonergic systems [3,52,53,55–57]. These 

neurotransmitters are involved in the regulation of 

attention [58–61]. Furthermore, PUFAs modulate the 

brain gene transcriptions [1]. Collectively, these findings 

suggest that normal intercellular communication, as well 

as physiological membrane status, are critically 

dependent on n-6 and n-3 PUFA levels [1,62,63]. 

 In preclinical studies using rodent models, 

experimental inductions of n-3 PUFA deficiency led to 

deficits in the regulation of cognitive functions, 

locomotor and exploratory activity as well as the 

emotional status [64–68]. In order to decrease CNS levels 

of DHA in rodent offspring, the diet of dams needs to be 

devoid of all n-3 PUFAs throughout the gestation and 

lactation periods [65]. Several studies demonstrated that 

an n-3 PUFA deficiency in the brain of rodents obtained 

over generations is associated with an increase in activity 

[27,66,69], impairments in spatial learning [64,70,71], 

working memory [72] and olfactory discrimination 

learning [73]. Such n-3 PUFA deficient animals have also 

been shown to display increased rates of anxiety [74], 

aggression and depression [75]. Moreover, it has been 

reported that low dietary levels of n-3 PUFAs during 

gestation and throughout the postnatal period resulted 

in a decreased level of DHA in the retina and cerebral 

cortex in nonhuman primates [76]. These changes have 

been associated with motor and cognitive impairments 

(e.g. visual performance) [77,78].  

 As previously noted, a lack of nutritional essential 

fatty acids has been linked with symptoms of ADHD 

[43,44]. The biological basis for this assumption lies in 

the significant biological changes directly resulting from a 

dietary lack of such fatty acids [59]. Unfortunately, most 

human studies regarding the effect of n-3 PUFAs in ADHD 
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are inconsistent with one another; for details see [1,50]. 

The present state of preclinical animal evidence shows 

an association between n-3 PUFAs and altered motor 

activity [27,66]. However, there is currently an absence 

of animal studies investigating the effects of n-3 PUFA 

deficiency in the developing brain on other ADHD-related 

symptom domains, i.e. attention and impulsivity. 

Preclinical animal studies can make an extremely 

valuable contribution to the better understanding of the 

role of PUFAs in the symptoms of ADHD. 

 In the present experiment, the aim was to examine 

the effects of an n-3 PUFA deficiency on attention, 

impulsivity and activity by investigating the fourth 

generation of n-3 PUFA depleted Wistar rats. The three-

choice-serial-reaction-time task (3CSRTT) was used for 

this purpose. 

 

2. Methods 

2.1. Animals and experimental diet 

The present experiment was performed in accordance 

with the national laws (German law on Protection of 

Animals) and the principles of laboratory animal care 

(NIH publication No. 86- 23, revised 1996). The rats were 

handled according to the guidelines of the Federation for 

European Laboratory Animal Science Associations 

(FELASA). Four generations of Wistar rats were bred in 

our laboratory and fed an experimental n-3 fatty acid-

deficient (n-3 Def) diet. The first generation of female 

Wistar rats was delivered by Charles River Laboratories 

(Sulzbach, Germany). The study was started with three-

month-old male rats of the fourth generation of PUFA-

deficient dams. Twelve males from the deficient group 

served as the experimental treatment group and were 

kept on n-3 Def diet throughout the study period. The 

control group was comprised of twelve males which 

were fed an n-3 fatty acid-sufficient (n-3 Suf) diet both 

prenatally and throughout the study period. The feeding 

conditions had been employed in pregnant dams and 

were kept constant during gestation, lactation, post-

weaning and behavioral test phases. Access to food was 

restricted, since the behavioral paradigm used in this 

study (3CSRTT) is based on food reinforcement. Water 

was provided ad libitum. The rats’ weight was carefully 

controlled, and a weight reduction of more than 5% was 

avoided in order to prevent stress [79,80] and 

subsequent changes in the dopaminergic system [81]. 

The rats were housed in standard cages under standard 

animal laboratory conditions (12:12 h light/dark cycle, 

room temperature 22 °C, humidity 50%) in the animal 

laboratories of the University of Regensburg. All 

treatments, trainings and tests were performed during 

the light phase between 9 a.m. and 4 p.m. After the 

experiments, rats were sacrificed using carbon dioxide. 

 The experimental diets (n-3 Def and n-3 Suf) were 

prepared by Ssniff Spezialdiäten GmbH (Soest, Germany). 

Both diets are based on the American Institute of 

Nutrition–93 G (AIN93G) and meet all the current 

nutrition standards for rat growth [82]. The fatty acid 

composition of the diets is shown in Table 1. The diets 

were stored at -20 °C and provided fresh daily.  

 

 

Table 1. Fatty acid composition of the experimental diets 

(Ssniff Spezialdiäten, Soest, Germany) 

 
 

                                        n-3 fatty acid-          n-3 fatty acid- 

                                        deficient diet           sufficient diet    
    

 

Energy (Atwater),  17.1 17.1 

     MJ/kg* 

kJ% protein 18 18 

kJ% carbohydrates 60 60 

kJ% fat 22 22 

 

Fatty acids, % of diet 

C 6:0                                    0.05                      0.05 

C 8:0 0.62 0.59 

C 10:0 0.49 0.47 

C 12:0 3.64 3.48 

C 14:0 1.41 1.35 

C 16:0 0.85 0.84 

C 18:0 0.28 0.29 

C 20:0 0.01 0.01 

C 18:1 0.77 0.82 

C 18:2 n-6 1.58 1.54 

C 18:3 n-3 0.01 0.27 
 

 

* Physiological fuel value 

 

2.2. Three-choice-serial-reaction-time task (3CSRTT) 

The task is based on the five-choice-serial-reaction-time 

task [83,84]. In the present study, a three-choice variant 

of the paradigm was used (holes no. 3, 5, 7). The 

remaining unused holes were covered. The experiment 

was performed using four ventilated wooden chambers 

(Campden Instruments, Loughborough, Leicestershire, 

England) containing a stainless steel chamber (26 cm × 
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26 cm × 30 cm height). The steel chambers were lighted 

by 3-Watt light bulbs. Each chamber was equipped with 

three holes, which were arranged horizontally in the 

curved rear wall (see Figure 1). The holes were 2 cm 

above the chamber floor (stainless steel grid), each hole 

had a diameter of 2 cm and adjacent holes were 6 cm 

apart. In each hole, an infrared photocell was installed in 

order to detect a nose poke response of the rat to the 

hole. In addition, each hole was equipped with a 

standard light bulb (3 W). The animals were required to 

respond correctly to a stimulus by a nose poke into one 

of the three holes. A stimulus was defined as the 

illumination of a hole by the light bulb, and only one hole 

at a time could be illuminated. A correct response was 

rewarded with a food pellet (45 mg dustless sucrose 

pellets, Bio-Serv, Frenchtown, New Jersey, USA) which 

was dispensed into a food tray at the front wall (opposite 

the holes). False responses, premature responses or 

omissions were punished with a 5-s period of darkness. 

 

 
Figure 1. Three-choice-serial-reaction-time task (3CSRTT) 

 

 

The behavioral paradigm consisted of three phases. In 

the habituation phase, the ambient light was 

permanently turned on, 10 pellets were baited in the 

food tray and one pellet was placed in each illuminated 

hole. The rats were required to habituate to the boxes 

for 30 min a day. The habituation phase was finished 

when all pellets were found and collected, which was 

accomplished within two consecutive days. In the 

training phase, the rats were required to learn to 

respond correctly to the stimulus (i.e. random 

illumination of a hole, once per trial) in order to obtain a 

food pellet. The animals were trained on five consecutive 

days per week for 6 weeks (30 sessions). The stimulus 

duration (SD) was gradually reduced when a rat 

responded correctly within one training session of 30 min 

in at least 80% of the trials (number of correct trials/total 

correct and false responses, expressed as percent), and 

the omission rate was less than 20% (number of trials 

missed/total trials completed, expressed as percent). The 

SD lasted from 60 s (training level 1) to 1.5 s (final 

training level). All other parameters were kept constant 

during the training phase (inter-trial interval ITI of 5 s). In 

the final (testing) phase, the stimulus duration was 1.5 s 

and the test sessions were similar to the training sessions 

except that the ITIs varied randomly between 1.5 s, 2.5 s, 

3.5 s, 4.5 s, 5.5 s. 6.5 s, 7.5 s and 8.5 s. The order in which 

the rats were tested was randomized in all phases. See 

Figure 2 for the possible response trials in 3CSRTT. 

 

2.3. Statistical analysis 

The following parameters regarding attention were 

analyzed: (1) number of correct responses, (2) number of 

false responses (commission errors), (3) number of 

missed responses (omission errors), (4) percentage of 

correct responses (i.e. number of correct responses/total 

correct and false responses, expressed as percent) and 

(5) percentage of missed responses (i.e. total number of 

missed responses/total trials completed, expressed as 
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percent). In addition, the following parameters 

concerning impulsive behavior were compared between 

groups: (6) number of premature responses, (7) number 

of panel pushes during ITI, (8) number of time-out 

responses and (9) number of perseverative responses. 

Moreover, the following parameters concerning activity 

were examined: (10) number of trials completed, (11) 

correct response latency, (12) incorrect response latency 

and (13) reward collection latency.  

 A mean value of performance for each group was 

calculated. All findings concerning group differences are 

expressed as means ± standard errors (M ± SE). Statistical 

analyses were performed using the nonparametric 

Mann-Whitney U-Test (between subjects design), and an 

α-level of 0.05 was applied. All statistical analyses were 

performed using the statistical package IBM SPSS 

Statistics 23 for Windows. 

 

 

 

 

 
 

 

Figure 2. Possible reactions of the rats in the 3CSRTT 
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3. Results 

3.1. Comparison between the n-3 fatty acid-deficient  

(n-3 Def) and n-3 fatty acid-sufficient (n-3 Suf) groups  

All results are presented as means ± standard errors. 

3.1.1. Training phase 

About 30 sessions were needed until the rats were able 

to fulfill the criteria. In the training phase, no significant 

differences between the two groups were found (data 

not shown). 

 

 

 

3.1.2. Test phase 

The results in regard to the performance-related 

parameters are given in Table 2. The comparisons 

between the experimental conditions revealed a 

statistically significant difference with respect to the 

number of panel pushes during ITI. The n-3 Def group 

made significantly more panel pushes at the food-tray 

than the n-3 Suf group. None of the remaining 

comparisons reached statistical significance. 

 

 

Table 2. Performance of the diet groups n-3 Def and n-3 Suf on attention, impulsivity and activity as measured by 

3CSRTT (means ± standard errors) 

 

 

 

n-3 Def group 

       (n=12) 

 

 

n-3 Suf group 

       (n=12) 

 

p-value Z-value 

 

Attention parameters 

 

    

No. of correct responses 34.33 ± 4.66 40.42 ± 5.23 .298 1.040 

No. of commission errors   2.50 ± 0.71   2.83 ± 0.67 .660 .440 

No. of omission errors 24.50 ± 3.16 16.58 ± 2.85 .068 -1.822 

% of correct responses 92.95 ± 1.76 92.91 ± 1.71 .884 -.145 

% of omissions 41.75 ± 5.19 30.15 ± 5.65 .157 -1.415 

     

 

Impulsivity parameters 

 

    

No. of premature responses   5.67 ± 1.47   7.58 ± 3.16 .704 -.379 

No. of panel pushes during ITI 73.75 ± 14.15 
A 

51.17 ± 16.89 0.043 -2.022 

No. of time-out responses   9.75 ± 1.74 12.75 ± 3.82 .908 -.116 

No. of perseverative responses   2.08 ± 0.96   1.67 ± 0.51 .880 .151 

     

 

Activity parameters 

 

 
 

  

No. of trials completed 61.33 ± 4.05 59.83 ± 3.78 .834 -.210 

Correct response latency (s)   1.01 ± 0.07   0.92 ± 0.05 .356 -.924 

Incorrect response latency (s)   1.81 ± 0.31   2.05 ± 0.32 .757 .309 

Reward collection latency (s)   1.35 ± 0.15   1.12 ± 0.04 .564 -.577 

     

 

     n-3 Def group = n-3 fatty acid-deficient group; n-3 Suf group = n-3 fatty acid-sufficient group 
       A 

p < 0.05 compared with n-3 Suf group 
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4. Discussion 

The effect of PUFA deficiency on attention, impulsivity 

and activity in rats has not been sufficiently investigated. 

The aim of the present study was therefore to examine 

the role of n-3 PUFA depletion over four generations by 

measuring attentional processes in the fourth generation 

of these depleted rats using the 3CSRTT.    

 At the descriptive level, the n-3 Def group made 

fewer correct responses and missed more signals than 

the n-3 Suf animals. These results might be taken to 

suggest that attentional processes could be negatively 

affected by n-3 PUFA depletion in rats. However, neither 

of these between-group differences was statistically 

significant. Seen in this light, the present findings do not 

support previous observations of depletion-induced 

cognitive deficits, e.g. impairments in spatial learning, 

working memory and olfactory discrimination learning 

[64,70–73]. Moreover, the present study results run 

counter to previous findings in human studies showing 

an association between a lack of DHA in the diet of 

preterm infants and neurocognitive deficits, e.g. lower IQ 

scores [33–40]. Our outcomes also conflict with 

experimental findings obtained in nonhuman primates, 

where a deficiency in n-3 PUFAs was associated with a 

decrease in visual acuity [77] and performance [78].  

 However, CSRTT employs more parameters in the 

rating of attention, such as the percentage of correct 

responses and missed reactions, as well the number of 

false responses. This outcome also failed to be 

statistically significant. These findings are inconsistent 

with the premise that a PUFA deficiency exerts an 

influence on dopaminergic and serotonergic 

neurotransmission [3,52–56], since it is known that these 

neurotransmitters are involved in the modulation of 

attention [58–61]. However, the n-3 PUFA deprivation in 

rats over generations may produce other developmental 

changes or induce an unnaturally high inflammatory 

level, which may have an impact on cognition [85]. Some 

studies, conducted in different animal models, show that 

diet-induced reductions of DHA levels in the brain are 

associated with changes in neuronal plasticity as well as 

memory deficits [86–88]. 

 Nevertheless, it is important to note that attention 

parameters cannot be considered as a single value. 

Instead, they should be viewed in the context of more 

generalized activity. Therefore, the second aim of the 

present experiment was to investigate activity-related 

effects of a diet deficient in n-3 PUFAs. The CSRTT 

provides no valid parameters for mobility. However, the 

total number of trials completed can indicate a general 

response-activity. No statistically significant differences 

between groups could be observed in this regard. 

However, at the descriptive level, the n-3 Def rats 

completed slightly more trials compared to the n-3 Suf 

group. These findings might indicate some increase in 

number of responses in the n-3 Def group. Interestingly, 

the n-3 Def rats are also marginally slower in correct 

response and reward collection. These differences in 

behavior between groups may be due to an influence on 

the motivational state [65,89]. However, given the 

inconsistent pattern of results at the descriptive level 

and the complete lack of statistically significant 

differences, the present study was unable to find activity-

related effects of a diet deficient in n-3 PUFAs. 

 The third aim of the present experiment was to 

investigate impulsivity-related effects of a diet-induced 

n-3 PUFA deficiency. The n-3 Def diet significantly 

increased the number of panel pushes in the food-tray 

during ITI compared to the n-3 Suf rats. Therefore, these 

data may suggest that an n-3 PUFA deficient diet 

produced negative effects on behavioral control. This 

result is in accordance with several previous studies, 

which have investigated the effect of n-3 PUFAs on 

impulsivity [90] and general activity of rodents [59,91]. 

However, an important consideration is that only one in 

four between-group comparisons regarding impulsivity-

related parameters reached statistical significance. Since 

Dervola and colleagues [90] studied the effects of n-3 

PUFA supplementation on reinforcer-controlled 

behavioral performance, one obvious – and potentially 

critical – difference that might account for differences in 

study results is the employed direction of n-3 PUFA 

modulation, i.e. supplementation versus depletion. 

Nevertheless, the presently employed CSRTT offers more 

parameters to assess impulsive behavior: the number of 

premature responses, the number of time-out responses 

and the number of perseverative responses. Moreover, 

the variable ITI period implemented in the present 

testing procedure is more suited to assess behavioral 

control, since the variation of this parameter directly 

taps the ability to control a behavioral response to an 

anticipated stimulus event. 

 In conclusion, the present data, derived from the 

measuring of attention, impulsivity and activity in the 

fourth generation of n-3 PUFA-deficient Wistar rats, 

revealed no relevant effects of an n-3 PUFA deficiency 

over four generations. Our profile of results is consistent 

with a previous study, which demonstrated a significant 

decrease in n-3 PUFA levels in the brain of mice (53%) 

and no concomitant impairments of either olfactory 
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function or spatial learning in the Morris water maze 

[92]. In contrast, other studies have reported conflicting 

results. The significant reduction of DHA phospholipids in 

the brain (50% to 80%) affected cognitive processes [70–

73,93]. A plausible explanation for the discrepancy 

between the previous and the present findings could be 

provided by the different models of rodents and the 

more complex learning paradigm that we used. It would 

therefore be of interest to examine and compare the 

different tests in one animal model regarding cognition 

and the deficit in n-3 PUFAs. 

 As the present study showed no marked effects of    

n-3 PUFA depletion on attention, impulsivity and activity 

parameters in rats, it may be interesting to perform 

further investigations regarding PUFA depletion over a 

longer time period. The biosynthesis of DHA from ALA in 

rodents is more effective than in nonhuman primates 

[76]. Thus, a longer period of n-3 PUFA deprivation is 

needed to achieve a reduced DHA concentration in the 

rat brain, allowing a meaningful comparison with 

humans [85,94]. Thus, it would be necessary to examine 

the impact of a prenatal n-3 PUFA deprivation on the 

cognitive functions in rats over more than four 

generations [95]. 
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